首页> 外文OA文献 >An Alternate Construction of an Access-Optimal Regenerating Code with Optimal Sub-Packetization Level
【2h】

An Alternate Construction of an Access-Optimal Regenerating Code with Optimal Sub-Packetization Level

机译:用maTLaB实现接入最优再生码的交替构造   最佳子包级化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given the scale of today's distributed storage systems, the failure of anindividual node is a common phenomenon. Various metrics have been proposed tomeasure the efficacy of the repair of a failed node, such as the amount of datadownload needed to repair (also known as the repair bandwidth), the amount ofdata accessed at the helper nodes, and the number of helper nodes contacted.Clearly, the amount of data accessed can never be smaller than the repairbandwidth. In the case of a help-by-transfer code, the amount of data accessedis equal to the repair bandwidth. It follows that a help-by-transfer codepossessing optimal repair bandwidth is access optimal. The focus of the presentpaper is on help-by-transfer codes that employ minimum possible bandwidth torepair the systematic nodes and are thus access optimal for the repair of asystematic node. The zigzag construction by Tamo et al. in which both systematic and paritynodes are repaired is access optimal. But the sub-packetization level requiredis $r^k$ where $r$ is the number of parities and $k$ is the number ofsystematic nodes. To date, the best known achievable sub-packetization levelfor access-optimal codes is $r^{k/r}$ in a MISER-code-based construction byCadambe et al. in which only the systematic nodes are repaired and where thelocation of symbols transmitted by a helper node depends only on the failednode and is the same for all helper nodes. Under this set-up, it turns out thatthis sub-packetization level cannot be improved upon. In the present paper, wepresent an alternate construction under the same setup, of an access-optimalcode repairing systematic nodes, that is inspired by the zigzag codeconstruction and that also achieves a sub-packetization level of $r^{k/r}$.
机译:考虑到当今分布式存储系统的规模,单个节点的故障是一种普遍现象。已经提出了各种度量来度量故障节点修复的有效性,例如修复所需的下载数据量(也称为修复带宽),在辅助节点上访问的数据量以及联系的辅助节点数。显然,访问的数据量不能小于维修带宽。对于“按转移帮助”代码,访问的数据量等于修复带宽。随之而来的是,具有最佳修复带宽的传输帮助代码是访问最佳的。本文的重点是使用最小可能的带宽来修复系统节点的“按需传送”帮助代码,因此对于修复系统性节点而言是最佳访问方式。 Tamo等人的锯齿形构造。系统节点和奇偶校验节点都被修复的访问最佳。但是所需的子分组化级别为$ r ^ k $,其中$ r $是奇偶校验数,而$ k $是系统节点数。迄今为止,在Cadambe等人的基于MISER代码的构造中,访问最优代码最可实现的子分组化级别是$ r ^ {k / r} $。其中仅修复系统节点,并且辅助节点传输的符号的位置仅取决于故障节点,并且对于所有辅助节点都是相同的。在这种设置下,事实证明此子分组化级别无法提高。在本文中,我们提出了在相同设置下的一种替代构造,它是一种修复锯齿形代码构造的启发,并且可以实现$ r ^ {k / r} $的子分组化级别,是一种修复系统节点的访问最优代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号